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Week 3
Strain and stress in one
dimension

Treatment of bars like springs
Stress in axially loaded bars
Microscopic equilibrium

Statically indeterminate systems - The
displacement (stiffness) method

Georg Fantner  +
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* HES BEEN UNDER A LOT OF PRESSURE LATELY.”

Stress-Strain
relationships:
Hooke’s law

What is the relationship between the

applied load and the deformation of a
structure?

Speaker N



=Pl Stress Strain relationships

For each incremental stress there is a proportional increase of strain 0 X &

Hooke’s law for normal stress: o=F" ¢
E = "Youngs modulus” or “elastic modulus”

Hooke’s law for shear stress: T = G Y s
G="shear modulus” or “modulus of rigidity” e e

Strain ——»

Proportionality limit: the limit of where the increase in stress becomes non-linear
with the increase in strain
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Assumptions we are makingin
the simple form of Hooke’s law

piS

The material is homogeneous: E and G do not
vary from point to point

The material isotropic: E and G are invariant with
respect to any rotation of the coordinate system

There is no effect of temperature on the
mechanical properties E and G

Spea
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Materials
classification:

= Ductile materials: materials that can withstand a
large amount of strain without significant
increase in stress (rubber, polymers, skin, low
carbon steel)

= Brittle materials: materials that experience a
huge increase in stress for even small strains.
These materials will fail abruptly after small
amounts of deformation (ceramics, silicon, cast
iron, concrete)

= Some materials have different properties in
different directions (wood, bone, carbon
composites). Such materials CAN NOT be
treated with the simple form of Hooke’s law.

Some inorganic
materials

P e
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=P*L  Deformation in axially loaded bars

» Hooke’s Law:;

€

FE -
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= Strain in axially loaded bar with uniform cross-section:

PL AFE
=z = T 9
~~

stiffness of bar

= Strain in axially loaded bar with arbitrary material or cross-section:

P Pw
5‘/0 A E@"
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k = springconstant
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Treatment of bodies like
springs

From the axially loaded bar we have
seen the communality of the load
extension curve to the basic force
extension curve of a spring:

Axially loaded
bar

Hooke’s
Law

AFE
P_T J

Spring
constant

AFE
k=1




=PrL  Stress in axially loaded bars

What happens inside the bar when it is stretched?

(@) E L_’ P
» Axially loaded bar fixed at x=0 and loaded A > B
by force P at x=L (figure a) %=0 x=L
= Apply method of section normal to bar axis s |
(figure b) p ®) H > P
= 72d e P
o= P gy R W
= Apply method of section angled to bar axis @ g e
(figure c) ¢ 2 X P 49

Angular dependence of stress

_ force  Pcosf P

2
= — = — )
o0 area A/cosf A cos
= — Psinf _ —Bsinﬁcose
0= A/cos A




=PrL  Stress in axially loaded bars

Directions of maximum stress

= Maximum normal stress:

5 P

=0
1 @g

= Maximum shear stress:

P
iTg d (——Sinﬁcosﬁ) =0 — 0 =45°

a0’ dap\ A
P
| Trmaz| = 1 sin(m/4) cos(m/4)

|7_ | _ P _ Omax
max 24 9
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Example: elongation of a
steel bar

A load of 5kN pulls on a round steel
bar (E=200GPa) that has a length of
10m. The bar is not allowed to
stretch more than 3mm, nor must it
exceed a stress of 150MN/m2. What
is the minimum diameter that the bar
must have?




B ME-231B / STRUCTURAL MECHANICS FOR SV

ANLAWER
O_ “a j— < py —
MAY - O nn ° = A
FR A hin M O hax
V\h:/:,.a >~ é‘ = 3.3
c
ARG
%hﬁx = — Sran
L_L 10 om
AN P o= o' P
Srax-E Ve (D am * 2900 T
Vi S0 S e
Lmic 1S due TO fan ExTENS 0w

0_\
n
w
&
N
O
%

=y

"
org Fantner




B ME-231B / STRUCTURAL MECHANICS FOR SV

‘9
S PelAc T

(%

1500 mm ——p| 4——500 mm

%\A;wa : %GOMCTIQ/
~n Lg'r < lgm
o Lk" - 0.8 2w

- W&Tb‘m}rz,

A EM: 70%&«
* Eo = xao% Pal

SN -G
~ STERLVIN K¢ » EM: €. #3-(o

Alken:
o)
b) £L7T0TaL

Example: Multi-material
composite bar

A solid bar 50 mm in diameter and 2000 mm long consists of
a steel and an aluminum section, as shown below. When an
axial force P is applied to the system, a strain gauge
attached to the aluminum indicates an axial strain of
0.000873 m/m. The elastic modulus of steel is
=E51=200GPa, E, ,=70GPa.

(a) Determine the magnitude of applied force P, and

(b) if the system behaves elastically, find the total elongation
of the bar.

-
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Microscopic equilibrium

We have defined strain in
microscopic terms, we have
defined Hookes law in terms of
stress and strain, now we need

to define equilibrium in
microscopic terms.
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What kind of forces can act on
an object?

Georg Fantner

Point Point loads P: A discrete force acting at
one point and one point only

b Distributed axial loads q(x): force that
Distributed acts per unit length

Bod Body forces B(x): force that acts per
4 volume (e.g. gravity, magnetic field etc.)



Microscopic equilibrium analysis

— NW+ dNT(x)dx

Calculation of the stress at an arbitrary
point in the structure acting on an
infinitesimal element dV=A(x)dx

The internal axial force N(x) balances both
external forces (distributed axial load q(x),

and axial body force By, {N(x) n d]:;iflf) , da:} ~ N(2) + g(2)dz + By A(z)dz = 0
WD 4 o)+ BaA@) =0
X

First order, ordinary differential equation for the axial
normal stress
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£PFL  The three equations *

In structural mechanics, we (always) rely on these 3 equations:

= Equilibrium equation:
ensures that all forces are in
equilibrium

= Constitutive equation:
Relates two quantities with
materials specific properties:

= Kinematic Equation:
relates strain (¢) to displacement

(u): e(z) = —-




Superposition principle

The effect of the sum of forces is equal to
the sum of the effects of the individual
forces.

F(xgq +xp) = F(xq) + F(xp)
Flax*x,) = axF(xq)

This principle is only valid whenever there
exists a linear relationship between the
external loads and the structural
displacement! In our case we deal only
with small displacements where Hooke’s
law is valid. So the superposition principle
is valid.
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Example: superposition

A uniform bar with cross-section A
and elastic modulus E is loaded at 3
points along its axis as shown below.

What is the total elongation of the
bar?
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